Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Background: Climate change is a strong contributing factor in the lengthening and intensification of wildfire seasons, with warmer and often drier conditions associated with increasingly severe impacts. Land managers are faced with challenging decisions about how to manage forests, minimize risk of extreme wildfire, and balance competing values at risk, including communities, habitat, air quality, surface drinking water, recreation, and infrastructure. Aims: We propose that land managers use decision analytic frameworks to complement existing decision support systems such as the Interagency Fuel Treatment Decision Support System. Methods: We apply this approach to a fire-prone landscape in eastern Washington State under two proposed landscape treatment alternatives. Through stakeholder engagement, a quantitative wildfire risk assessment, and translating results into probabilistic descriptions of wildfire occurrence (burn probability) and intensity (conditional flame length), we construct a decision tree to explicitly evaluate tradeoffs of treatment alternative outcomes. Key Results: We find that while there are slightly more effective localized benefits for treatments involving thinning and prescribed burning, neither of the UWPP’s proposed alternatives are more likely to meaningfully minimize the risk of wildfire impacts at the landscape level. Conclusions: This case study demonstrates that a quantitatively informed decision analytic framework can improve land managers’ ability to effectively and explicitly evaluate tradeoffs between treatment alternatives.more » « less
-
Abstract BackgroundAs fire regimes are changing and wildfire disasters are becoming more frequent, the term megafire is increasingly used to describe impactful wildfires, under multiple meanings, both in academia and popular media. This has resulted in a highly ambiguous concept. ApproachWe analysed the use of the term ‘megafire’ in popular media to determine its origin, its developments over time, and its meaning in the public sphere. We subsequently discuss how relative the term ‘mega’ is, and put this in the context of an analysis of Portuguese and global data on fire size distribution. ResultsWe found that ‘megafire’ originated in the popular news media over 20 years before it appeared in science. Megafire is used in a diversity of languages, considers landscape fires as well as urban fires, and has a variety of meanings in addition to size. What constitutes ‘mega’ is relative and highly context‐dependent in space and time, given variation in landscape, climate, and anthropogenic controls, and as revealed in examples from the Netherlands, Portugal and the Global Fire Atlas. Moreover, fire size does not equate to fire impact. ConclusionGiven the diverse meanings of megafire in the popular media, we argue that redefining megafire in science potentially leads to greater disparity between science and practice. Megafire is widely used as an emotive term that is best left for popular media. For those wanting to use it in science, what constitutes a megafire should be defined by the context in which it is used, not by a metric of one‐size‐fits‐all.more » « less
-
Abstract Purpose of Review Increasing wildfire size and severity across the western United States has created an environmental and social crisis that must be approached from a transdisciplinary perspective. Climate change and more than a century of fire exclusion and wildfire suppression have led to contemporary wildfires with more severe environmental impacts and human smoke exposure. Wildfires increase smoke exposure for broad swaths of the US population, though outdoor workers and socially disadvantaged groups with limited adaptive capacity can be disproportionally exposed. Exposure to wildfire smoke is associated with a range of health impacts in children and adults, including exacerbation of existing respiratory diseases such as asthma and chronic obstructive pulmonary disease, worse birth outcomes, and cardiovascular events. Seasonally dry forests in Washington, Oregon, and California can benefit from ecological restoration as a way to adapt forests to climate change and reduce smoke impacts on affected communities. Recent Findings Each wildfire season, large smoke events, and their adverse impacts on human health receive considerable attention from both the public and policymakers. The severity of recent wildfire seasons has state and federal governments outlining budgets and prioritizing policies to combat the worsening crisis. This surging attention provides an opportunity to outline the actions needed now to advance research and practice on conservation, economic, environmental justice, and public health interests, as well as the trade-offs that must be considered. Summary Scientists, planners, foresters and fire managers, fire safety, air quality, and public health practitioners must collaboratively work together. This article is the result of a series of transdisciplinary conversations to find common ground and subsequently provide a holistic view of how forest and fire management intersect with human health through the impacts of smoke and articulate the need for an integrated approach to both planning and practice.more » « less
-
null (Ed.)We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great – can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? and (10) Is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep pace with changing climatic and wildfire regimes and declining forest successional heterogeneity after severe wildfires. Science-based adaptation options include the use of managed wildfire, prescribed burning, and coupled mechanical thinning and prescribed burning as is consistent with land management allocations and forest conditions. Although some current models of fire management in wNA are averse to short-term risks and uncertainties, the long-term environmental, social, and cultural consequences of wildfire management primarily grounded in fire suppression are well documented, highlighting an urgency to invest in intentional forest management and restoration of active fire regimes.more » « less
An official website of the United States government
